CIENCIAS







El enfoque de competencias en la educación.
·LA INNOVACIÓN: UNA PROBLEMÁTICA PERMANENTE EN EL CAMPO DE LA EDUCACIÓN
Necesitamos reconocer que la acelerada innovación se vuelve contra sí misma; desde una perspectiva interna a estos procesos —sobre todo en el ámbito tecnológico—, los ciclos de la innovación se acortan más cada vez. De esta manera, por ejemplo, un nuevo elemento en el ámbito de la informática tiene un periodo de frontera mucho más corto porque prácticamente es desplazado por otro de manera inmediata.
·TEMAS ESTRUCTURALES EN EL ÁMBITO PEDAGÓGICO FUNDAMENTALES PARA ACERCARSE AL ENFOQUE POR COMPETENCIAS
·EL ENFOQUE DE COMPETENCIAS EN EL CAMPO DE LA EDUCACIÓN Y DEL CURRÍCULO
Competencias disciplinares o transversales
 En el caso de los planes de estudio, es factible reconocer diversas competencias que surgen de la necesidad de desarrollar esos conocimientos y habilidades vinculadas directamente a una disciplina, así como aquellas que responden a procesos que requieren ser impulsados por un trabajo que se realice desde un conjunto de asignaturas del plan de estudios.




Exploration on Student-Centered Fermentation Engineering Course by Problems Conducted Teaching 

Fermentation engineering course is a strong application, practice of specialized course in the biological engineering professional. It is mass production of the required products process theory and an engineering technology courses, through microbial growth and metabolic activity and modern chemical technology. The content of the course are rich and various, and contain.




 

Si buscas hosting web, dominios web, correos empresariales o crear páginas web gratis, ingresa a PaginaMX
Por otro lado, si buscas crear códigos qr online ingresa al Creador de Códigos QR más potente que existe



CIENCIAS



VIRUS







Foto: Foto: Reuters.




La energia puede definirse en la forma tradicional, aunque no universalmente correcta como "la capacidad de efectuar trabajo". Esta sencilla definición no es muy precisa ni válida para todos los tipos de energia, como la asociada al calor, pero sí es correcta para la energia mecánica, que a continuación describiremos y que servirá para entender la estrecha relación entre trabajo y energia.

La energia es uno de los conceptos más importantes en todas las áreas de la física y en otras ciencias. La energia es una cantidad que se conserva, de ahí su importancia.

 

Energia Cinetica y Movimiento (Velocidad).- Para obtener su relación imaginemos una partícula de masa m que se mueve en línea recta con velocidad inicial Vi. Le aplicamos una fuerza neta constante F sobre ella paralela al movimiento, en una distancia d. Entonces, el trabajo efectuado sobre la partícula es W = Fd. Como F = ma (a, aceleración) y de la fórmula cinemática Vf2 = Vi2 + 2ad, con Vf la velocidad final, llegamos a:

W = Fd = mad = m[(Vf2 - Vi2) / 2d]d

Energia Potencial, Concepto y Ejemplo.- Se dice que un objeto tiene energia cuando está en movimiento, pero también puede tener energia potencial, que es la energia asociada con la posición del objeto.







 








¿qué se entiende por trabajo? En el lenguaje cotidiano tiene diversos significados. En física tiene un significado muy específico para describir lo que se obtiene mediante la acción de una fuerza que se desplaza cierta distancia.

El trabajo efectuado por una fuerza constante, tanto en magnitud como en dirección, se define como: "el producto de la magnitud del desplazamiento por la componente de la fuerza paralela al desplazamiento".

En forma de ecuación:
W = Fd = mad = m[(Vf2 - Vi2) / 2d]d, donde W denota trabajo, es la componente de la fuerza paralela al desplazamiento neto d.



 

.

En forma más general se escribe:
W=Fdcos, donde F es la magnitud de la fuerza constante, d el desplazamiento del objeto y el ángulo entre las direcciones de la fuerza y del desplazamiento neto. Notemos que Fcos es justamente la componente de la fuerza F paralela a d. Se aprecia que el trabajo se mide en Newton metros, unidad a la que se le da el nombre Joule (J).
1 J = 1 Nm.

Veamos un ejercicio.

Una caja de 40 kg se arrastra 30 m por un piso horizontal, aplicando una fuerza constante Fp = 100 N ejercida por una persona. Tal fuerza actúa en un ángulo de 60º. El piso ejerce una fuerza de fricción o de roce
Fr = 20 N. Calcular el trabajo efectuado por cada una de las fuerzas Fp, Fr, el peso y la normal. Calcular también el trabajo neto efectuado sobre la caja.

 

Solución: Hay cuatro fuerzas que actúan sobre la caja, Fp, Fr, el peso mg y la normal (que el piso ejerce hacia arriba).

El trabajo efectuado por el peso mg y la normal N es cero, porque son perpendiculares al desplazamiento (=90º para ellas).

El trabajo efectuado por Fp es:
Wp = Fpxcos (usando x en lugar de d) = (100 N)(30 m)cos60º = 1500 J.

El trabajo efectuado por la fuerza de fricción Fr es:
Wr = Frxcos180º = (20 N)(30 m)(-1) = -600 J.

El ángulo entre Fr y el desplazamiento es 180º porque fuerza y desplazamiento apuntan en direcciones opuestas.

El trabajo neto se puede calcular en dos formas equivalentes:

  • Como la suma algebraica del efectuado por cada fuerza:
    WNETO = 1500 J +(- 600 J) = 900 J.
  • Determinando primero la fuerza neta sobre el objeto a lo largo del desplazamiento:
    F(NETA)x= Fpcos - Fr
    y luego haciendo
    WNETO = F(NETA)xx = (Fpcos - Fr)x
    = (100 Ncos60º - 20 N)(30 m) = 900 J.

Volviendo al tema de la energia, un objeto en movimiento tiene la capacidad de efectuar trabajo, y por lo tanto se dice que tiene energia. Por ejemplo un martillo en movimiento efectúa trabajo en el clavo sobre el que pega. En este ejemplo, un objeto en movimiento ejerce una fuerza sobre un segundo objeto y lo mueve cierta distancia.